
ABSTRACT

A complex network of coupled dynamical units has often been the object of active investi-

gation in a wide range of interdisciplinary researches ranging from physical, biological to

socio-technical and engineering systems. Diverse collective behaviors emanate in complex

systems of interacting dynamical entities not only because of the local systems’ unique at-

tributes but mainly because of the variability in the fashion of interactions among the units.

Both coupling topology and coupling function play quite decisive roles in the emergence

of the collective asymptotic state. However, most of the existing investigations on coupled

oscillators focus only on attractive pairwise interactions. Nevertheless, there exist vari-

ous realistic, relevant scenarios in several scientific, technological, and natural instances,

where competing types of couplings affect the collective behavior of coupled oscillator

ensembles. One of the primary goals of this thesis is to study the diverse collective phe-

nomena of an ensemble of coupled nonlinear oscillators under the coexistence of attractive

and repulsive interactions in the static as well as in time-varying networks.

While complete synchronization is the least expected outcome in a static network with

mixed positive-negative couplings, such an emergent state is still possible under the time-

varying network formalisms. We encounter diverse collective behaviors ranging from com-

plete and cluster synchronization to inhomogeneous small oscillation due to the interplay

between the attractive and repulsive coupling strengths. In the absence of repulsive cou-

pling, we successfully calculate the critical positive coupling strength required for acquir-

ing complete synchronization using the time-average Laplacian matrix. We also recognize

that suitable repulsive strength can make the error dynamics intermittent and leaves the

signature of largely deviated extreme events. The formal practice to differentiate extreme

events from other events is choosing a threshold T = m+dσ, where m is the sample mean

of the observable and σ is the corresponding standard deviation. d is generally chosen ran-
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domly from the interval [4, 8]. We provide an analytical formulation to derive a threshold

HS = m+ 8σ that distinguishes extreme events from other intermittent states. We further

calculate an upper bound for the probability of occurrence of extreme events depending

on the choice of HS. Besides, we approximate the mean return interval of these extreme

events using time series analogs of Kac’s lemma.

In the case of static networks of coupled oscillators, we propose a unique algorithm

by identifying a suitable repulsive path in a connected graph for establishing zero frustra-

tion (antiphase states). Moreover, we provide an analytical understanding with the help

of graph theory to prove that antiphase synchronization is only possible in a connected

network if it is bipartite in nature. In addition, we formulate a universal 0 − π algorithm

for predicting the non-zero frustration value of arbitrary undirected non-bipartite graphs

of attractive-repulsively coupled limit cycle oscillators. Using this algorithm, one can eas-

ily construct a sparse non-bipartite network with desired frustration from a highly diluted

graph. We validate our findings in the single layer as well as multiplex networks. We

identify a mixed state of interlayer antisynchronization and intralayer synchronization in

a multiplex network when the interlinks’ strength between layers is solely negative. We

successfully calculate the amplitude of each Stuart-Landau oscillator, placed at each node

of a multiplex network, exhibiting this mixed state. This derived attractor size remains

independent of network size and agrees excellently with our numerical simulations for

negative interlayer coupling strength. Apart from deriving the necessary condition for

the existence of interlayer antisynchronization together with intralayer synchronization,

we analytically derive the invariance of the intralayer synchronization manifold. We also

derive the local stability condition of the interlayer antisynchronization state using the

master stability function approach.
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